Numerical Inverse Laplace Transforms for Electrical Engineering Simulation
نویسنده
چکیده
Numerical inverse Laplace transform (NILT) methods are widely used in various scientific areas, especially for a solution of respective differential equations. In field of an electrical engineering many various approaches have been considered so far, but mostly for a single variable (1D NILT), see at least (Brančík, 1999, 2007b; Cohen, 2007; Valsa & Brančík, 1998; Wu at al., 2001) from plenty of papers. Much less attention was paid to multidimensional variable (nD NILT) methods, see e.g. (Hwang at al., 1983; Singhal at al., 1975), useful rather for more complicated electromagnetic systems. The 2D NILT methods, see e.g. (Brančík, 2005, 2007a, 2007b; Hwang & Lu, 1999), can be applied for a transmission line analysis, or nD NILT methods, n ≥ 2, for a nonlinear circuits analysis, if relevant Laplace transforms are developed through a Volterra series expansion, see e.g. (Brančík, 2010a, 2010b, Karmakar, 1980; Schetzen, 2006), to highlight at least a few applications. This paper is focused on the class of NILT methods based on complex Fourier series approximation, their error analysis, their effective algorithms development in a Matlab language, and after all, on their selected applications in field of electrical engineering to show practical usefulness of the algorithms.
منابع مشابه
Application of Numerical Inverse Laplace Transform Algorithms in Fractional Calculus
It is known that the Laplace transform is frequently used to solve fractional-order differential equations. Unlike integer-order differential equations, fractional-order differential equations always lead to difficulties in calculating inversion of Laplace transforms. Motivated by finding an easy way to numerically solve the fractional-order differential equations, we investigated the validity ...
متن کاملAnalytical Solution for Two-Dimensional Coupled Thermoelastodynamics in a Cylinder
An infinitely long hollow cylinder containing isotropic linear elastic material is considered under the effect of arbitrary boundary stress and thermal condition. The two-dimensional coupled thermoelastodynamic PDEs are specified based on equations of motion and energy equation, which are uncoupled using Nowacki potential functions. The Laplace integral transform and Bessel-Fourier series are u...
متن کاملLaplace Transforms and Its Applications
Laplace transform is a very powerful mathematical tool applied in various areas of engineering and science. With the increasing complexity of engineering problems, Laplace transforms help in solving complex problems with a very simple approach just like the applications of transfer functions to solve ordinary differential equations. This paper will discuss the applications of Laplace transforms...
متن کاملNotes on Numerical Laplace Inversion
The main idea behind the Laplace transformation is that we can solve an equation (or system of equations) containing differential and integral terms by transforming the equation in time (t) domain into Laplace (2) domain. For example, we can use Laplace transforms to turn an initial value problem into an algebraic problem which is easier to solve. After we solved the problem in Laplace domain w...
متن کامل